Lateral inhibition and granule cell synchrony in the rat hippocampal dentate gyrus.

نویسندگان

  • R S Sloviter
  • J L Brisman
چکیده

Studies of patients with temporal lobe epilepsy and of experimental models of this disorder suggest that the hippocampal dentate gyrus may be a common site of seizure onset and propagation. However, the nature of the dentate "network defect" that could give rise to spontaneous, intermittent, and synchronous population discharges is poorly understood. We have hypothesized that large expanses of the dentate granule cell layer have an underlying tendency to discharge synchronously in response to afferent excitation, but do not do so normally because vulnerable dentate hilar neurons establish lateral inhibition in the granule cell layer and thereby prevent focal discharges from spreading to surrounding segments. To address this hypothesis, we (1) identified functionally independent segments of the granule cell layer; (2) determined whether discharges in one segment evoke lateral inhibition in surrounding segments; and, (3) determined if disinhibition induces normally independent segments of the granule cell layer to discharge synchronously. Simultaneous extracellular recordings were made from two locations along the longitudinal or transverse axes of the granule cell layer using saline- and bicuculline-filled electrodes that were glued together. Leakage of 10 mM bicuculline from the electrode tip produced no detectable spontaneous activity. However, single perforant path stimuli evoked multiple population spikes at the bicuculline electrode and simultaneous normal responses at the nearby saline electrode. The multiple spikes evoked at the bicuculline electrode did not propagate to, and were not detected by, the adjacent saline electrode, indicating functional separation between neighboring subgroups of granule cells. Paired-pulse stimulation revealed that multiple discharges were not only restricted to one segment of the granule cell layer, but strongly inhibited surrounding segments. This lateral inhibition in surrounding segments often lasted longer than 150 msec. Finally, we evaluated granule cell activity at two normally independent sites within the granule cell layer both before and after disinhibition was induced by high frequency stimulus trains or bicuculline injection. Following a 10 sec, 20 Hz perforant path stimulus train, 2 Hz stimulation evoked virtually identical synchronized epileptiform discharges from normally separated sites. Similarly, intrahippocampal or intravenous bicuculline injection produced spontaneous synchronous epileptiform discharges throughout the granule cell layer. These results indicate that lateral or "surround" inhibition is an operant physiological mechanism in the normal dentate gyrus and suggest that afferent stimuli to a disinhibited dentate network evoke highly synchronized discharges from large expanses of the granule cell layer that are normally kept functionally separated by GABA-mediated inhibition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats

Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...

متن کامل

The Effect of Prenatal Exposure to Restraint Stress on Hippocampal Granule Neurons of Adult Rat Offspring

Objective(s) It is well known that prenatal stresses (PS) induce a variety of neurobiological and behavioral alterations, some of them involving the hippocampal formation. This study aimed to determine whether restraint stress influences the neuronal volume and number of granule cells in the hippocampus of adult rat offspring. Materials and Methods Ten Wistar pregnant rats were randomly divi...

متن کامل

Dual mechanisms diminishing tonic GABAA inhibition of 1 dentate gyrus granule cells in Noda epileptic rats

29 The Noda epileptic rat (NER), a Wistar colony mutant, spontaneously has tonic– 30 clonic convulsions with paroxysmal discharges. In the present study, we measured 31 phasic (I phasic) and tonic γ-aminobutyric acid A (GABA A) current (I tonic) in NER 32 hippocampal dentate gyrus granule cells (DGGCs) and compared the results with 33 those of normal parent strain Wistar rats (WIS).

متن کامل

Paired-Pulse Inhibition and Disinhibition of the Dentate Gyrus Following Orexin Receptors Inactivation in the Basolateral Amygdala

The basolateral amygdala (BLA) has substantial effects on the neuronal transmission and synaptic plasticity processes through the dentate gyrus. Orexin neuropeptides play different roles in the sleep/wakefulness cycle, feeding, learning, and memory. The present study was conducted to investigate the function of the orexin receptors of the BLA in the hippocampal local interneuron circuits. For t...

متن کامل

Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process

Objective(s): Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippoca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1995